发生错误 详情 隐藏
您有未保存页面 恢复 取消

Organisation for Economic Co-operation and Development

The Organisation for Economic Co-operation and Development (OECD) is an international economic organisation of 34 countries founded in 1961 to stimulate economic progress and world trade. It is a forum of countries committed to democracy and the market economy, providing a platform to compare policy experiences, seek answers to common problems, identify good practices and co-ordinate domestic and international policies of its members.

所有数据集:  A E F G M T
  • A
    • 三月 2019
      来源: Organisation for Economic Co-operation and Development
      上传者: Knoema
      访问日期: 05 三月, 2019
      选择数据集
      Air Emission Accounts are available for European countries and a few non-European countries. The System of Environmental-Economic Accounting (SEEA) Central Framework is an accounting system developed around two objectives: "understanding the interactions between the economy and the environment" and describing "stocks and changes in stocks of environmental assets". The SEEA combines national accounts and environmental statistics in a statistical framework with consistent definitions, classifications and concepts allowing policy makers to evaluate environmental pressures from economic activities at macro- and meso-levels. Data refer to total emissions of CO2 (CO2 emissions from energy use and industrial processes, e.g. cement production), CH4 (methane emissions from solid waste, livestock, mining of hard coal and lignite, rice paddies, agriculture and leaks from natural gas pipelines), N2O (nitrous oxide), HFCs (hydrofluorocarbons), PFCs (perfluorocarbons), (SF6 +NF3) (sulphur hexafluoride and nitrogen trifluoride), SOx (sulphur oxides, NOx (nitrogen oxides), CO (carbon monoxide), NMVOC (non-methane volatile organic compounds), PM2.5 (particulates less that 2.5 µm), PM10 (particulates less that 10 µm) and NH3 (ammonia). The OECD Air Emission Accounts present data based on ISIC rev. 4.
  • E
    • 七月 2016
      来源: Organisation for Economic Co-operation and Development
      上传者: Knoema
      访问日期: 29 八月, 2017
      选择数据集
      EAMFP growth measures the residual growth in the joint production of both the desirable and the undesirable outputs that cannot be explained by changes in the consumption of factor inputs (including labour, produced capital and natural capital). Therefore, for a given growth of input use, EAMFP increases when GDP increases or when pollution decreases. As part of the growth accounting framework underlying the EAMFP indicator, the growth contribution of natural capital and growth adjustment for pollution abatement indicators are derived: Growth contribution of natural capital - measures to what extent a country's growth in output is attributable to natural resource use; Growth adjustment for pollution abatement - measures to what extent a country's GDP growth should be corrected for pollution abatement efforts - adding what has been undervalued due to resources being diverted to pollution abatement, or deducing the ‘excess' growth which is generated at the expense of environmental quality.
    • 五月 2019
      来源: Organisation for Economic Co-operation and Development
      上传者: Knoema
      访问日期: 28 五月, 2019
      选择数据集
      Air pollution is considered one of the most pressing environmental and health issues across OECD countries and beyond. According to the World Health Organisation (WHO), exposure to fine particulate matter (PM2.5) has potentially the most significant adverse effects on health compared to other pollutants. PM2.5 can be inhaled and cause serious health problems including both respiratory and cardiovascular disease, having its most severe effects on children and elderly people. Exposure to PM2.5 has been shown to considerably increase the risk of heart disease and stroke in particular. For these reasons, population exposure to (outdoor or ambient) PM2.5 has been identified as an OECD Green Growth headline indicator. The underlying PM2.5 concentrations estimates are taken from van Donkelaar et al. (2016). They have been derived using satellite observations and a chemical transport model, calibrated to global ground-based measurements using Geographically Weighted Regression at 0.01° resolution. The underlying population data, Gridded Population of the World, version 4 (GPWv4) are taken from the Socioeconomic Data and Applications Center (SEDAC) at the NASA. The underlying boundary geometries are taken from the Global Administrative Unit Layers (GAUL) developed by the FAO, and the OECD Territorial Classification, when available. The current version of the database presents much more variation with respect to the previous one. The reason is that the underlying concentration estimates previously included smoothed multi-year averages and interpolations; while in the current version annual concentration estimates are used. Establishing trends of pollution exposure should be done with care, especially at smaller output areas, as their inputs (e.g. underlying data and models) can change from year to year. We recommend using a 3-year moving average for visualization.
  • F
    • 十二月 2018
      来源: Organisation for Economic Co-operation and Development
      上传者: Knoema
      访问日期: 03 十二月, 2018
      选择数据集
      Austria: Long-term annual average 1961-90 Belgium: Data exclude underground flows and include estimates Canada: Long-term annual average 1971-2004 Chile: Long-term annual average 2000-2014 Colombia: Long-term annual average 1974-2012 Czech Republic: The long-term annual average refers to the latest 20 years Denmark: Long-term annual average 1995-2015 Estonia: Long-term annual average refers to the latest 30 years and includes only data about fresh surface water France: Long-term annual average : 1981-2010. Inflow and outflow: outflow is computed using the throughput of rivers having their source in France but the mouth outside France; measures are taken at the French border using the daily throughputs. Precipitation and real evapotranspiration data are derived from a gridded atmospheric model (grid point of 8 by 8 km2) applied to the territory of metropolitan France. Germany: Long-term annual average 1995-2015 Hungary: Long-term annual average 1971-2000 Ireland: Long-term annual average 1981-2010. Groundwater figures are not available and therefore are not included. Israel: Long-term annual average 2000-2013 Italy: Long-term annual average 1971-2000 Japan: Long-term annual average 1971-2006 Korea: Long-term annual average 1974-2003 Latvia: Long-term annual average 2005-2013 Lithuania: Long-term annual average 2000-2014 Mexico: The long-term annual average covers 30 years Netherlands: Long-term annual average 1981-2010 New Zealand: Long-term annual average 1995-2014 Norway: The data for precipitation and evotranspiration refer to the period LTAA (long-term annual average) 1961-90 whereas the others to the period LTAA 1981-2010, that is why precipitation minus evotranspiration is different from internal resources. Poland: Long-term annual average 1951-2014. Estimates on the base of mean annual flow. For more information, see: http://www.kzgw.gov.pl/ , http://www.pgi.gov.pl/ , http://www.psh.gov.pl/ , http://www.imgw.pl/ Slovak Republic: Long-term annual average is 1961-1990 for internal resources, 1961-2000 for external inflow Slovenia: Long-term annual average is 1971-2000 Sweden: Long-term annual average : 1990-2009. The difference between precipitation and evapotranspiration refers to storage Switzerland: Long-term annual average : 1981-2010 Turkey: Long-term annual average: data for internal flow refers to the period 1980-2011 Costa Rica: The long-term annual average refers to 1990-2014 Russia: The long-term annual average refers to 1936-1980
  • G
    • 二月 2017
      来源: Organisation for Economic Co-operation and Development
      上传者: Knoema
      访问日期: 17 十一月, 2017
      选择数据集
      Netherlands) Non-point sources include diffuse emissions from: a) road, rail and water transport, b) corrosion processes, c) run-off and drainage from agricultural soils, d) atmospheric deposition (excluding deposition on marine waters), e) urban run-off to sewers systems. Direct discharges from non-point sources: sum of direct discharges from diffuse sources and transfers like drainage and run-off from soils and direct atmospheric deposition at fresh surface waters (only N, Cu and Zn). Total discharges to the sea include atmospheric deposition at marine surface water. In most cases atmospheric deposition is the larger part of the total load to marine waters Sweden) Industrial wastewater, total discharged only includes industrial wastewater treatment plants with a permit in the national register for environmental reports and industries with own treatment and release to water. Excluded are industrial wastewater treatment plants that transfer water to urban wastewater treatment plants
    • 三月 2019
      来源: Organisation for Economic Co-operation and Development
      上传者: Knoema
      访问日期: 19 三月, 2019
      选择数据集
      This dataset shows data provided by Member countries' authorities through the questionnaire on the state of the environment (OECD/Eurostat), and to Eurostat through the Waste Statistics Regulation. They were updated or revised on the basis of data from other national and international sources available to the OECD Secretariat, and on the basis of comments received from national Delegates. Selected updates were also done in the context of the OECD Environmental Performance Reviews. The data are harmonised through the work of the OECD Working Party on Environmental Information (WPEI) and benefit from continued data quality efforts in OECD member countries, the OECD itself and other international organisations. In many countries systematic collection of environmental data has a short history; sources are typically spread across a range of agencies and levels of government, and information is often collected for other purposes. When interpreting these data, one should keep in mind that definitions and measurement methods vary among countries, and that inter-country comparisons require careful interpretation. One should also note that data presented here refer to national level and may conceal major subnational differences.
  • M
    • 十二月 2018
      来源: Organisation for Economic Co-operation and Development
      上传者: Knoema
      访问日期: 11 十二月, 2018
      选择数据集
      Air pollution is considered one of the most pressing environmental and health issues across OECD countries and beyond. According to the World Health Organisation (WHO), exposure to fine particulate matter (PM2.5) and ground-level ozone (O3) have potentially the most significant adverse effects on health compared to other pollutants. PM2.5 can be inhaled and cause serious health problems including both respiratory and cardiovascular disease, having its most severe effects on children and elderly people. Exposure to PM2.5 has been shown to considerably increase the risk of heart disease and stroke in particular. For these reasons, population exposure to (outdoor or ambient) PM2.5 has been identified as an OECD Green Growth headline indicator. Exposure to ground-level ozone (O3) has serious consequences for human health, contributing to, or triggering, respiratory diseases. These include breathing problems, asthma and reduced lung function (WHO, 2016; Brauer et al., 2016). Ozone exposure is highest in emission-dense countries with warm and sunny summers. The most important determinants are background atmospheric chemistry, climate, anthropogenic and biogenic emissions of ozone precursors such as volatile organic compounds, and the ratios between different emitted chemicals.
  • T
    • 六月 2019
      来源: Organisation for Economic Co-operation and Development
      上传者: Knoema
      访问日期: 05 六月, 2019
      选择数据集
      Mexico: "Total urban wastewater treatment" include some plants whose treatment type is not identified Netherlands: Other waste water treatment, design capacity BOD 1000 kg O2/day: the design capacity is expressed in Total Oxygen Demand (1000 kg O2/day, not BOD). This value is based on pollution equivalents of 136 grams O2 per day.